If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10c^2-4c=0
a = 10; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*10}=\frac{0}{20} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*10}=\frac{8}{20} =2/5 $
| -3+1/5y=5 | | (4x+3)/(9x+8)=0 | | 18d^2+45d+25=0 | | 2+10y=-6+9y | | 11+4r=3+5r | | y/2+11=14 | | 3=a+(-3) | | 4=4a+2(-3) | | Y+2x=5;x=-1,2,3 | | -7x+8=x-48 | | 2b+5=1+3b | | 3x-15=(2x-4) | | 4/3x-3/2=1/2x+6 | | F(m)=6•m+7 | | 6+1.5x=10+2.5x | | -5(t-7)+5=5 | | 7(y-8)+24=6(y-6) | | q+14=8(q+) | | 7x+7=3x+12 | | 7(y-8)+24=0.6(y-6) | | 23f-41=54+21 | | 3(6r+1)=-69 | | 4x-20x+x=150 | | 4x-20x+x=160 | | 4x-20x+x=170 | | 40+15x=180+10x | | 4x-20x+x=180 | | 30=-5/3v | | 4x-20x+x=60 | | 12(5+2y)=4y@(6-9y) | | 4x-20x+x=70 | | 4x-20x+x=80 |